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Abstract 

A method of multiple small potential steps was applied to obtain 
current-potential curves at a rotating disk electrode (RDE), which is 
more accurate than the classical potential scan RDE method. Several 
basic benefits of the new RDE method were summarized, including 
reducing charging current, removing adsorption current, identifying 
kinetic current, and separating kinetic and diffusion reactions. 
The practical application of this new method is to study 
high-surface-area powder catalysts for fuel cell research. An example 
of using this new method was demonstrated by measurement of the 
current-potential curves of catalytic oxygen reduction on a 
heat-treated, metalloporphyrins-coated graphite RDE. A successful 
kinetic analysis of catalytic oxygen reduction at the 
powder-catalyst-coated electrode was achieved. 
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1.  Introduction 
The rotating disk electrode (RDE) method [1-2] has been widely used as a 
powerful tool for studying electrode kinetics. For example, many electro- 
chemical laboratories have used the RDE method to study the kinetics of 
catalytic oxygen reduction [3-8], which has been recognized as one of the 
most complex electrode processes. The kinetic rate constants of catalytic 
oxygen reduction can be easily obtained through a Koutecky-Levich plot 
[2]. The RDE method requires that the electrode is in a steady state and 
that the solution has a laminar flow at the electrode surface. This require- 
ment has only been applied to the study of powder catalysts, because 
powder catalysts may exhibit large charging currents or a turbulent flow 
of the electrolyte because of their large surface area. In addition, identifi- 
cation of catalytic current from unavoidable adsorption and electrode- 
self-reaction current is difficult, which causes the current-potential curve 
by RDE to measure less accurately. An effort has been made to improve 
the accuracy of the RDE method by linear rotation scan [9]; unfortunately, 
this measures the current only at a specific potential, and the current- 
potential curve is not available. 

Fuel cells have been considered one of the most promising candidates for 
innovative energy sources [10-15] for cleaner air and less pollution. The 
demand for developing room-temperature fuel cells, such as polymer 
electrolyte membrane fuel cells (PEMFCs), has sped up the research on 
electrode catalysts. However, practical catalysts, such as fine powders, are 
used in PEMFCs. To characterize such powder catalysts with an RDE 
method seems difficult because of their large surface area. 

Electrode catalysts are a key electrode component for PEMFCs. To de- 
velop a high-power PEMFC, we have tried to use the RDE method to 
study a series of powder catalysts. Ni and Anson [16] studied a relation 
between the reduction potentials of adsorbed and unadsorbed CoTMPJ3, 
by using a zero-scan method to remove the surface response. Based on 
their work, we introduce an RDE method that uses multiple small poten- 
tial steps, which can be used to study the electrode kinetics of powder 
catalysts for PEMFC applications. 



2.  Experimental Setup 

2.1 Materials 

Palladium and platinum powder catalysts were electrochemically pure 
grade and used as received. Iron (III) tetraphenylporphyrin and cobalt 
tetraphenylporphyrin (from Aldrich) were heat-treated under argon 
atmosphere at 600 to 700 °C and ground to fine powder to be used as 
catalysts. 

2.2 Apparatus and Procedures 

We performed the RDE experiments with a conventional glass cell that 
had three separate compartments for working, counter, and reference 
electrodes. A reversible hydrogen electrode (RHE) was used for the 
reference electrode, and a platinum screen was used for the counter 
electrode. An ordinary pyrolytic graphite (PG) RDE (0.2 cm2) was used 
for the working electrode. A paste of catalyst with 3 percent Teflon binder 
was spread on the electrode and dried slowly. For convenience, we called 
the powder-catalyst-coated RDE electrodes Pd/PG, Pt/PG, HT-FeTPP/ 
PG, and HT-FeTPP/CoTPP/PG, respectively. In this report, HT-FeTPP 
means heat-treated iron tetraphenylporphyrin, while HT-FeTPP/CoTPP 
represents a heat-treated catalyst mixture of 50 percent FeTPP and 50 
percent CoTPP. Electrolytes (0.5 M H2S04) were prepared with distilled 
water and high-purity sulfuric acid. High-purity argon and oxygen were 
used for deaeration of the solution. 

An EG & G PAR 173 Potentiostat and a 175 Universal Programmer were 
used for the electrochemical measurements. 



3. Method 
When using the RDE method to study electrocatalysis, we often used the 
Levich equation and Koutecky-Levich equations: 

iL  = 0.620 nFADVW2v-V6C*0 (1) 

ik  =nfiUTcatC; (2) 

r1   = l/(nFAKTcaf*) + 1/(0.620 nFAD}/3v~l^C*0co1^2). (4) 

Here, iL (A) is the Levich current for the electrode reaction of a reactive 
species by a diffusion-controlled process, ik (A) is the kinetic current for 
the reaction of a reactive species at the electrode surface, n (mol-1) is the 
electron transfer number per mole of a reactive species, F (A • s) is the 
Faraday constant, A (cm2) is the electrode area, K (M_1 • s_1) is the kinetic 
rate constant for catalytic reaction, Tcat (mol/cm2) is the quantity of 
catalysts on the surface of the electrode, C0* (mol/cm3) is the bulk concen- 
tration of the reactive species, D0 (cm2 • s_1) is the diffusion coefficient of 
the reactive species, v (cm2 • s _1) is viscosity of water (0.01 cm2 • s_1), and 
co (s_1) is the rotation rate (2rf = 27rrpm number/60). 

Normally, the electrode current described in equation (2) is measured by a 
slow-rate potential scan (10 mV/s or 5 mV/s) in order to maintain an 
electrochemical steady state of electrode and to reduce the charging 
current to a negligible level. 

However, when measuring the powder catalyst coating on an RDE, we 
found that the large charging current is not negligible because of a high- 
surface-area electrode. The electrode double-layer charging current [2] 
can be described as 

i=vCd+ [(Ei/Rs- vQ)exp(- t/RsCd)] . (5) 

Here, V is the potential scan rate, Cd is the double-layer capacitance, Rs is 
the solution resistance, E{ is the potential at initial time, and t is time. 
If the potential scan rate is zero, equation (5) becomes 

i = (Ei/Rs)exp[-t/(RsCd)] . (6) 

The term i in equation (6) is the charging current for a potential step E;-. If 
we wait long enough, the charging current will decay to a negligible level. 
For our experiment, we used 15 s for the decay time and 1 s for the 
measurement. 

Another problem in using potential scan to measure the reaction current 
by RDE is the disturbance of adsorption or electrode self-reaction 



phenomena. The adsorption or electrode self-reaction current [2] can be 
described as 

i = n2F2/(4RTvAr*) . (7) 

Here, i is the peak current of a reversible adsorption, R is the gas con- 
stant, T is the absolute temperature, and T* is the electrode surface excess 
of the species. If the potential scan rate is zero, then the current caused by 
adsorption and electrode self-reaction will decay to a negligible level. 

Here, an RDE method by multiple small potential steps is suggested to 
measure the reaction current at an RDE to reduce the charging and ad- 
sorption current. Figure 1 shows schematic profiles of multiple small 
potential steps and the resulting current response. For each potential step, 
only one current value is recorded, and this is at the end of the step. From 
the multiple small potential steps, we can obtain a collection of current 
points within the whole range of reaction potentials, i.e., a current- 
potential curve. The charging current is negligible when the reaction 
current at each potential scan is recorded. Therefore, in the present study, 
we define the scan rate obtained by the multiple potential steps at an RDE 
to be 0 V/s, because the potential is not changing when the current is 
recorded. Furthermore, the adsorption or electrode self-reaction current 
will not be recorded, because the scan rate is 0 at the electrode. Therefore, 
more accurate current-potential curves can be obtained with the use of 
the method of multiple small potential steps for RDE measurement. 

Figure 1. Schematic       (a) 
profiles of (a) multiple 
small potential steps       ;~ 
and (b) resulting ^ 
current signals at ~ 
rotating disk electrode.   a> 
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4.  Results and Discussions 
With the RDE method of multiple small potential steps, we can study the 
electrode kinetics of catalytic reactions at powder-catalyst-coated elec- 
trodes. Some specific applications of this method are summarized in this 
report. 

4.1      Reduce Charging Current 

One of the most important applications of the RDE method of multiple 
small potential steps is to reduce the charging current at an RDE. Figure 2 
shows current-potential curves for oxygen reduction at an HT-FeTPP/PG 
RDE. After heat treatment, the FeTPP is carbonized and is more conduc- 
tive and insoluble in any solvent. This means that it can only be coated as 
a powder of microscopic particle size. The HT-FeTPP-coated electrode has 
a very high surface area, leading to a large double-layer charging current. 
The solid curve (10 mV/s) in figure 2, obtained by the classical potential 
scan RDE method, shows a very large charging current. These data are 
not reliable for kinetic data analysis. The base current level of the solid 
line at the initial scan is as large as 70 |J,A. The dashed curve (0 mV/s) was 
obtained by the RDE method of multiple small potential steps; the 
double-layer charging current is almost reduced to zero. Once the charg- 
ing current is eliminated, the current-potential curve for catalytic oxygen 
reduction at the HT-FeTPP/PG RDE is accurate enough to be used for 
analysis of the electrode kinetics. 

Figure 2. Polarization 
curves for oxygen 
reduction at HT- 
FeTPP-coated RDE in 
Oz-saturated 0.5-M 
H2S04 solution. 
Catalyst load is 
2.0 mg and rotation 
rate is 100 rpm. 
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4.2 Remove Adsorption or Electrode Self-Reaction Current 

Adsorption or electrode self-reaction current should always be avoided 
when measuring the electrochemical reaction of species in bulk solution. 
Sometimes the adsorption or electrode self-reaction current is so large, 
especially at high-surface-area electrodes, that it may cover a whole wave 
of an electrochemical reaction from bulk solution. Figure 3 shows the 
current-potential curves of oxygen reduction at a Pd/PG RDE. Since the 
solid curve (10 mV/s) was obtained from the classical potential scan RDE 
measurement, we can clearly see a large peak current appearing at 0.8 V, 
which comes from the surface reaction of the Pd-black catalyst. Because of 
the large peak current, the RDE data are inaccurate. The dashed curve 
(0 mV/s) was obtained from the RDE method by multiple small potential 
steps. The peak current at 0.8 V is completely gone. After the peak current 
of the electrode self-reaction is removed, the current-potential curve is 
smoother, and the electrode reaction belongs to the pure reduction of 
oxygen from bulk solution. 

4.3 Identify Kinetic Current of Species in Bulk Solution 

The electrochemical reaction of species from bulk solution does not 
always only give diffusion current; it sometimes also gives kinetic cur- 
rent. Furthermore, the current-potential curve caused by the kinetic 
reaction of the species from bulk solution may show different shapes, or 
even look like peaks. Because most adsorption or electrode self-reaction 
waves look like peaks, the identification of adsorption and kinetic cur- 
rents becomes difficult with the classical potential-scan RDE method. 

Figure 4 shows the current-potential curves of methanol oxidation at a 
Pt/PG RDE in sulfuric acid solution in which the classical potential scan 
RDE method (10 mV/s) and the multiple potential steps RDE method 
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Figure 4. Polarization 
curves for methanol 
oxidation at Pt-black- 
coated RDE in argon- 
saturated 0.5-M 
H2S04 containing 
1.0 M of methanol. 
Rotation rate is 
400 rpm and Pt-black 
load is 0.5 mg. 

< 
E 
c 
o 
13 
O 

0.1 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 H 

-0.6 

- 0 mV/s 

— 10mV/s 

1.2 1.0 0.8 0.6 0.4 0.2 0.0 

Voltage (Vvs RHE) 

(0 mV/s) have been used. We do not know whether the current is caused 
by adsorption or by slow electrode reaction. However, with the RDE 
method of multiple small potential steps, we can easily solve this prob- 
lem, because at zero scan rate, the adsorption current will be reduced to 
zero. When the rotation rate was changed from 100 to 2500 rpm, no 
appreciable current change was observed. Therefore, we can determine 
that the electrochemical oxidation of methanol in acidic solution at the Pt- 
black-coated electrode is limited by a slow electrode reaction. For com- 
parison, as previously mentioned, a current-potential curve using classi- 
cal potential-scan RDE voltammetry (the solid line, 10 mV/s) is shown in 
figure 4. Because of the influence of charging current, the anodic current 
for methanol oxidation at 10 mV/s appears larger than that at 0 mV/s, 
and the background current between 0.4 and 0.2 V increases appreciably. 

4.4      Separate Kinetic and Diffusion Reactions 

Since the RDE method of multiple small potential steps can be used to 
identify adsorption and kinetic reactions, it can also be used to separate 
kinetic and diffusion reactions. Figure 5 shows the current-potential 
curves of methanol oxidation and oxygen reduction at a Pt/PG RDE in 
acidic solution. Here, the methanol oxidation is defined as negative 
current and oxygen reduction as positive current. The methanol oxidation 
wave is shown in the lower part of the figure, and the oxygen reduction 
wave is shown in the upper part; they are clearly separated at zero cur- 
rent. Even with an increase in the rotation rate from 100 to 2500 rpm, the 
wave in the lower part in the figure still does not change; however, the 
wave at the upper part increases appreciably with the rotation rate. 
Apparently, the oxygen reduction is identified as a diffusion wave, but 
methanol oxidation is identified as a kinetic wave. 



Figure 5. Polarization 
curves for oxygen 
reduction and 
methanol oxidation at 
Pt-black-coated RDE 
in 02-saturated 
0.5-M H2S04 

containing 1.0 M of 
methanol. Scan rate is 
0 mV/s and Pt-black 
load is 0.5 mg. 
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4.5      An Example of Application 

One application of the RDE method of multiple small potential steps is to 
study the catalytic kinetics of oxygen reduction on heat-treated metallo- 
porphyrins. Figure 6 shows a series of current-potential curves for oxygen 
reduction at an HT-FeTPP/CoTPP/PG RDE in 02-saturated 0.5-M sulfu- 
ric acid electrolyte. The baseline currents for all curves are near zero, 
which implies that the double-layer charging currents are negligible. All 
current-potential curves are smooth, and no adsorption phenomena are 
observed. With increasing rotation rate, the catalytic current increases. No 
flat plateaus can be seen at the current-potential curves for all rotation 
rates, which is most likely because of a low concentration of catalytic sites 
at the electrode [17]. 

One can perform the kinetic analysis of oxygen reduction at the powder- 
catalyst-coated electrode with Koutecky-Levich plot [2] using equation 
(4). Figure 7 shows the Koutecky-Levich plots obtained from the data in 
figure 6. As expected, all plots are straight lines. With increasing potential, 
the intercept becomes larger in the figure, which implies that a kinetic 
process for catalytic oxygen reduction at the powder-catalyst-coated 
electrode becomes slower when potential goes up. 

For calculating the rate constants of catalytic oxygen reduction, one must 
use the diffusion coefficient and the concentration of oxygen in bulk 
solution. The diffusion coefficient of 02 (1.7 x 10"5 cm2 s_1) and the con- 
centration of 02 (1.3 x 10-6 mol/cm3) were obtained from the literature 
[17]. The rate constants for catalytic oxygen reduction at the HT-FeTPP/ 
CoTPP/PG electrode were calculated with the results of the Koutecky- 
Levich plots in figure 7 and summarized in table 1. With decreasing 
electrode potential, the rate constant becomes significantly larger. 
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5.  Conclusions 
An RDE method of multiple small potential steps was used for improving 
the accuracy of classical potential scan at an RDE. Several benefits of the 
new RDE method have been summarized, including reducing charging 
current, removing adsorption current, identifying kinetic current, and 
separating kinetic and diffusion reactions. With the new RDE method, 
one can study high-surface-area powder catalysts via the RDE. An ex- 
ample of using this new method was a study of catalytic oxygen reduc- 
tion at a heat-treated, metalloporphyrin-coated RDE. The kinetic analysis 
of catalytic oxygen reduction at the powder-catalyst-coated electrode was 
achieved with the use of the Koutecky-Levich plot. 
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